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INTRODUCTION

N long ago this group first described microelectrccemica
oevi:es whch are based on microfabricated arrays of electrzdes
ocnnected by electr tive materials.1  Beca= t iee cct-.v
of these devices are chemical in nature, many of these devices are
chemically sensitive and comprise a potentially useful class of
chemical sensors. Devices showing sensitivity to pH, 02, H2 , 1i,
and Na' have been demonstrated. 2 ,3 These devices are typically

.erated in fluid solution electrolytes. If this class of dei-ces :c
to be useful as gas sensors, systems which are not dependent on
li'-,id electrolytes need to be developed. We have recently reported
solid state microeiectrochemical transistors which reolace con-
veno.onal liquid electrolytes with polymer electrolytes based on
oolyethyleneoxide (PEC) and poiyvinylalcohol (PVA) .4  in this reocrt,
we discuss additional progress toward solid state devices by
employing a new polymer ion conductor based on the polyphosphazene
comb-pol ymer, MEEP 5 (shown below). By taking advantage of polymer
ion conductors we have developed microelectrochemical devices where
all of the components of the device are confined to a chip.

Po lybis (2-2-methoxyethoxy~ethoxy) ghosghazeng]

MEEP/LiCF 3SO 3 (4:1)

-- N==P4-n

*Author to whom correspondence should be addressed.
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Figure 1. A conducting polymer based microelectrochemical

-ransostcr. P3Me7 connects two wires of a microfabricated

array. Electrodes I and 2 are source and drain, respec-
-;-e. At left, VG is such that the polymer is neutral

and the device is "off", :D = 0. Switching VG to an
3xidizing potential (right) turns the device "on", -D > D.

MICROELECTROCEMICAL TRANSISTORS

F ogure I shows a cross-sectional view of a conducting polymer-
based microelectrcchemical transistor. Two electrical contacts, tne

source and drain, are connected by an electroactive material whose

resistance can be varied as a function of its state of charge. -n

the example in Figure 1, the electroactive material is tne conductinq
pclymer poly(3-methylthiophene), p3MeT, which in its neutral state is

insu1atng but when oxidized becomes conducting. A small bias, VD,

app'ied between the souz , d the drain resulting in a drai

current, 2, depending on th ate of charge of the conducting

polymer. For a given VD, ID c~n be varied by changing the gate

cotential, VG, of the system which in these devices is electro-
chemical potential. The faradaic current required to switch the
device is the gate current, I. The device output is usually
represented as a plot of ID vs. VG for a constant VD . This

representation provides a measure of the relative conductivity of the 'or
conducting polymer as a function of electrochemical potential for
small values of VD.

In our devices, the source and drain are microfabricated wires )rn

typically -70 Wn long x -2.4 Jim wide x -0.1 m high. 6 An array of
eight gold or platinum microelectrodes with interelectrode spacing of
1.4 m is fabricated on a 3 mm x 3 mm chip.1,6 The switching speeds /

of these devices are enhanced by small electrode spacings.
6 In ?'y

addition, reduced spacing between electrodes and small electrode area .dd r
permit studies in solid electrolyte systems where the resistances are

typically much higher than in liquid electrolyte solutions.



SOLID STATE MICROELECTROCHEMICAL DEVICES

recaration 3f solid state electrochemical devices rezuire tha-
:entitnai fluid solution electrolytes be replaced with a scl-d -n

u-eectrolytes have been widely studied primarily f:r
-7dev e:-,-n :'f r ion energy-density batteries. -lasses of solid

state electr ._ ytes n:u':de classical solids such as the -aluminas,
polyelectrolytes such as Nafion, gel electrolytes and polymer
electrolytes. 7 or the urocse of developing soli -d state eec . .-

emica devices, polymer eIectr-lytes aze promising because the 7 are
easily confined t- microelectrochemical arrays and are gas permea-'e.

-or applicaticn to the surface of the device, the polymer and
electrolyte are codissolved in a soreading solvent. After
evaocration cf the solvent the polymer electrolyte remains as a thz.
film. :he conc rin or mhe salt in the polymer is expressed as a
ratio of the number of polymer repeat units per un- of salt.
-.ese studies, the MEEID / '/: 3S33 ratio is 4:1 or 5:1. The isnnc
ccnductivity of these polymer electrolytes is thought to be aue -c

hon hopping between Lewis base sites along and between chains. This
process is facilitated by small amounts of a coordinating sclvent.-
-ne devices described here are operated in the presence of some
solvent vapor. Usually 20 il of THF per 50 ml N2 atmosphere over -:e
evice is added as a plasticizer.

Transistor Devices

A schematic of a solid state p3MeT transistor employing the
YEP/!LiCF 3SO3 electrolyte is shown in Figure 2. Ag plated onto one

microelectrode serves as a reference electrode, and a small amount of
Ag epoxy close to the array serves as the counter electrode.
Alternatively, Ag epoxy can be used as both reference and counter
electrode. Monomeric 3-methylthiophene is polymerized
electrochemically onto electrodes 2-4 in CH3CN/0.1 M (n-Bu4N)C0 4

.

The polymer is confined to these electrodes by holding the other
electrodes in the array at a reducing potential to discourage polymer
growth. The device is characterized before and after the addition of
the M-EEP electrolyte. This permits comparison of the device
characteristics in solution and in the polymer electrolyte. Cyclic
voltammetry at each of the derivatized electrodes in CH3CN/0.1 M
LiCF3SO3 is shown on the left side of Figure 2. The magnitude of the
current is the same whether scanning the derivatized electrodes
together or individually, showing that the p3MeT connects the
electrodes. Cyclic voltammetry of the same array now employing
MEEP/LiCF 3SO3 electrolyte is shown on the right side of Figure 2.
The shape of the curves is essentially the same as in solution
electrolyte. The currents are smaller due to the slower scan rates
and reduced counterion mobility in the polymer.
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Figure 2. Top. Schematic of a p3MeT-based solid state

m:icroelectrochemical device. Center. Cyclic voltammetry

at the p3MeT derivatized electrodes. At left, the device

's characterized in the solution electrolyte CH3 CN/0.! M

LiCF 3S 3 before the application of MEEP. At right, the

same device is characterized under MEEP/LiCF 3 SO3 (5:1).

Bottom. Comparison of the steady-state 1D vs. VG of the

p3MeT device in fluid solution electrolyte and under

MEEP/LiCF3 SO3. Electrodes 3 and 4 are source and drain

respectively (see Figure 1).
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:he transistor characteristics of this device are also presented in
Fla-ure 3. At potentials where W03 isnurltedvo is of"
..cwever at negatove potentials W03 i's reduced and the zevic;e tu rns

IE:ec rode MEEP/LiCF 3 SO 3  W 3 Ag Eoy
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Figure 3. Top. Schematic of a W0 3 -based solid state
microelectrochemical device. Bottcm. Steady-state ID vs
VG- of the device diagrammed at top. Electrodes 6 and 7
are source d drain.
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Figure 4. Top. Schematic of a solid state micro-

electrochemical diode based on p3MeT and W0 3 under the

pclymer electrolyte MEEP/LiCF3 SO 3 . Bottom. Diode char-

acceristc4cs of the two-terminal device at top. The device

-urns on when the applied voltage is equal to the differ-

ence in redox potentials of the two materials and the bias

_s such that the p3MeT is oxidized and the WO 3 is reduced.

f he bias is reversed (not shown), no current flows.

Diode Devices

By confining both p3MeT and W0 3 to the same array we form the

basis of a two-terminal microelectrochemical diode. The underlying

principle is that one material, the p3MeT, will only be conducting

when it :s o:idized, and the other, the WO 3 , will only be conducting

when reduced. A schematic of the device and the diode characteristic

are shown in Figure 4. Current will only flow in the two-terminal

device if the mag.iitude of the applied voltage is equal to the

difference in redox potential of the two materials and the bias is

such that the conducting polymer is oxidized and the metal oxide is

reduced. No current flows when it is reverse biased.

Devices Based on Redox Conduction

Conventional redox polymers can also form the basis of

electrochemical transistors.12 Conventional redox polymers have
lower maximum conductivity and yield devices having lower values of

1. than conducting polymers or metal oxides. Conventional redox
polymers offer an important design advantage, however. Nearly any
stable redox active material can be incorporated into a polymeric
system to form a conventional redox polymer. This allows the
fabrication of devices with a wide range of chemical sensitivities.
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Figure 5. Schematic and transistor characteristic of a
new class of microelectrochemical device which is based Dn
a redox active material dissolved in a polymer ion
conductor. Here, TMPD is sublimed into and satu.:3tes the
MEEP/LiCF3SO 3 film. The drain voltage, VD, is 25 mV.
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